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Determination of material parameters from THz measurements 
 

BATOP GmbH, January 2016 
 
This paper helps to deduce material parameters like refractive index N(f) or the dielectric function ε (f) 
from Terahertz measurements in transmission or reflection. The experimental base is the absolute 
spectral amplitude of the Fourier transformed THz pulse. The dielectric function is determined by curve 
fitting using an appropriate material description and - if needed - also a calculation of thin film 
interference. 
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1. The dielectric function ε (ƒ) of materials 

1.2 Basic relations 
Refractive index  N = n + i⋅k   n- real part, k – imaginary part  (1) 
 
Dielectric function  ε (ƒ) = N2 = εr + i⋅εI  εr - real part, εI – imaginary part  (2) 
 
Here ε means the relative permittivity. 
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  with ƒ   - frequency 

   ε∞ -  high wavelength limit of the dielectric function ε (ƒ). It can be 1. 

   ƒ0 -  resonance frequency 

   ƒP -  plasma frequency 

   γ  -  damping constant 

The resonance frequency ƒ0 is characterized by the bonding energy of electrons in solids or the 

vibration energy in molecules E0 and connected with this energy by E0 = h⋅ƒ0.  

The plasma frequency ƒP is determined by the density nD of charged particles with charge q, for 

instance the electrons in a metal, but also in a dielectric or semiconductor material after excitation of 

bound electrons into the conduction band. With the particle charge q, the particle mass m and the 

vacuum permittivity ε0  the plasma frequency ƒP  can be calculated as 

   
m
qnf

0

2
D

P ⋅
⋅

=
ε

       (4) 

The damping constant γ=1/(2⋅π⋅τ) is related to the relaxation time τ of the excited particles and 

therefore with the energy exchange with the surroundings (photon or phonon emission). We use here 

the frequency ƒ instead of the angular frequency ω=2⋅π⋅ƒ to simplify the equations. 
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1.3 Metals 
In case of free electrons in a metal with electrical conductivity σ the electrons can undergo free 

translation, but their movement is damped by resistive joule heating,.  

Because these electrons are free there does not exist a resonance frequency. Therefore is ƒ0 = 0. The 

resulting dielectric function for metals is 
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Here the optical conductivity σ(ƒ) is introduced with  
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τ is the time between two collisions of the free electrons and is related to the damping constant γ by  
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In a metal is τ ≈ 10-14 s and therefore the damping constant γ ≈ 2⋅1013 Hz. Therefore in the low 

frequency range f << γ around 1 THz the real part of the dielectric function can be neglected so that it 

can be approximated by 
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Because of the low damping of incident electromagnetic wave in the THz range a metal is a nearly 

perfect reflector and can be used as reference mirror for calibration of reflection measurements. 

 

1.4 Dielectric solids 

In a low frequency region the response of a dielectric material can be described using equation (3). In 

a wider spectral range more then one energy transition can be involved, so the dielectric function must 

be extended as 
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to include different electronic transitions with resonance frequencies ƒ0,j. The dispersion formula (9) 

ensures, that the real and imaginary parts of the dielectric function are related according to the 

Kramers-Kronig relation. 

 

1.5 Gases 
A gas with vibrational transitions in the THz region can be described with equation (9) and ε∞ = 1. 
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2. THz transmission and reflection measurements 
In a THz time-domain spectrometer at first the time dependent transmitted or reflected pulse is 

measured. In the next step the measured time dependent signal is Fourier transformed into the 

frequency domain to get the frequency dependent phase ϕ(ƒ) and the absolute value of the 

transmittance ⎜t(ƒ)⎜ or reflectance ⎜r(ƒ)⎜. Because of the ambiguity of the phase modulo 2 ⋅π the use of 

the phase function ϕ(ƒ) for the determination of material parameters is difficult. Therefore we use for 

this determination only the functions ⎜t(ƒ)⎜ or ⎜r(ƒ)⎜.   

 

2.1 Transmission trough a gas 
As an example the time-domain transmission measurement of humid air is considered. As reference 

the transmission trough dry nitrogen gas is used. The figure 1 below shows the result of the time-

domain measurement. 

 
Fig. 1: Time-domain transmission of humid air and dry nitrogen gas with 20 cm measurement path 

 

The spectral transmission t(f) can be calculated from Fourier transformed time-domain data of humid 

air tair(f) and reference tnitrogen(f)  by 

)f(t
)f(t

)f(t
nitrogen

air=          (11) 

The result of this division is shown in figure 2a. 
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Fig. 2a: Spectral transmission ⎜t(ƒ)⎜ of humid air with 20 cm measurement path length,, calculated via 

Fourier transformation of time-domain data in fig. 1. The calculated points by Fourier 
transformation are connected with lines. 

 

 

There are many water vapor absorption lines in the measured spectral region. Transmission values > 1 

can be only explained by uncertainties of the time-domain measurements which increase with 

frequency.  

For determination of the dielectric function ε(f) we restrict ourselves on a smaller spectral region from 

300 GHz to 1.8 Hz.  

 
Fig. 2b: Spectral transmission ⎜t(ƒ)⎜ of humid air with 20 cm measurement path length with restricted 

spectral region. 
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The transmission of an electromagnetic wave trough a material can be described by the transmission 

coefficient   c/fdN2i)f(i ee)f(t ⋅⋅⋅⋅⋅⋅ == πΦ       (12) 

  With  Φ(ƒ)  - frequency dependent phase 

   d      - thickness of the (gas) sample 

   c      - speed of light in vacuum. 

By using relations (1) and (2) we get for the absolute value of transmission 
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For determination of the dielectric function (10) of the measured gas two steps are needed: 

- The start parameters ƒ0,j, ƒP,j and γj are estimated from measured transmittance ⎜t(ƒ)⎜.  

- A curve fitting of ⎜t(ƒ)⎜with the dielectric function (10) in equation (11) must be done. 

The start parameters can be estimated from measured transmittance ⎜t(ƒ)⎜ as follows: 

- ƒ0,j = frequencies at the transmission minima tmin=⎜t(ƒ0,j)⎜ 

- γj     = FWHM - full width of half maximum of the spectral absorption minima tmin 

- 
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Fig. 2c shows the result of a curve fitting to approximate the measured spectral transmission in fig. 2b. 

 
Fig. 2c: Calculated (blue line) and measured (red points) transmittance ⎜t(ƒ)⎜ of water vapor using fitted 

parameters ƒ0,j, ƒP,j and γj for the dielectric function ε(f). 
 
The dielectric function ε(f) with fitted parameters ƒ0,j, ƒP,j and γj is shown in figures 4 and 5. 
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Fig. 3: Real part of dielectric function εr(f) with fitted parameters ƒ0,j, ƒP,j and γj 

 
Fig. 4: Imaginary part of dielectric function εi(f) with fitted parameters ƒ0,j, ƒP,j and γj 
 

Interpretation of the measured absorption lines in water vapor 

The fitted ƒ0,j, ƒP,j and γj  parameters for the absorption lines are listed in table 1. If we consider the 

measured resonances as vibrations of the H atoms in the H2O molecule, then we can use relation (4) 

to determine the atomic polarization from the measured plasma frequencies ƒP,j. The hydrogen and 

oxygen atoms are in the first stage electric neutral, so that the charge would be zero. But the charge 

transfer in the atomic bonds results in dipoles, which can vibrate and rotate. 

For a simple interpretation of the measured plasma frequencies fP,j equation (4) with the hydrogen atom  

mass mH and q=e0 can be used. 

         

The density nW of the water vapor atoms in the THz measurement path and can be calculated by using 

the ideal gas equation for the water molecules 
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Here pW is the partial pressure of water vapor at temperature T and kB the Boltzmann constant. At a 

temperature of 22 °C (T = 295 K) and 50 % relative humidity the water vapor pressure is pW =1.3 kPa. 

With these values we can calculate nW = 3.19⋅1023/m3 in the measurement path. 

If we consider the plasma frequency fP,j as oscillator strength with transition probabilities pj, then we can 

these probabilities deduce from the measured plasma frequencies as follows: 
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According to equation (7) we can calculate also the relaxation time τj for the j-th transition. The results 

are included in table 1. 

 

 

Measured water vapor resonances Calculated resonance parameters 

Resonance 
frequencies 

f0,j [THz] 

Plasma 
frequencies 

fP,j [GHz] 

Damping 
constant 
γj [GHz] 

Transition 
energies 

E0,j = f0,j⋅h   [meV] 

Transition 
probabilities pj 

*106 

Relaxation time 
constants 
τj [ps] 

0.5635 2.1713 11.906 2.335 8.54 13.37 
0.7593 1.7625 12.413 3.146 5.63 12.82 
0.9942 1.6974 10.990 4.119 5.22 14.48 
1.1061 4.4438 14.952 4.583 35.77 10.64 
1.1692 4.4286 12.216 4.844 35.53 13.03 
1.2225 3.2014 26.86 5.065 18.57 5.92 
1.4181 3.7876 11.130 5.876 25.99 14.30 
1.6088 2.7593 14.507 6.666 13.79 10.97 
1.6739 7.7914 11.437 6.936 109.97 13.92 
1.7243 5.8436 7.8733 7.145 61.86 20.22 
1.7718 1.8708 7.3127 7.341 6.34 21.77 

 

Table1: Fitted parameters ƒ0,j, ƒP,j and γj  for the measured water vapor sample according to equations 
(2), (10) and (12) and the calculated parameters transition energy E0,j, transition probabilitiy pj, and 
relaxation time τj  after equations (14), (15) and (7) . 
 

The calculated relaxation time constantsτj are in the region of several hundred picoseconds. This 

shows, that for an accurate determination of such molecule resonances a long time scan of about 1 ns 

for the THz measurement is needed. 

 

 

2.2 Transmission trough a solid 
The transmission of an electromagnetic wave trough a solid material with thickness d can be 

considered in a first approximation as a three step process. Using the symbols in figure 5 below we can 

write for the total transmission t considering possible multiple reflections within the resonator like solid 

   2
dbf
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⋅⋅−

⋅⋅
=        (17) 

The three transmission coefficients and the two reflection coefficients can be calculated using the 

Fresnel equations with zero degree angle of incidence as follows: 
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Fig. 5   Schematic for transmission of an electromagnetic field E through a solid with dielectric function 

ε(ƒ) and thickness d. 
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The interference term in the denominator in eq. (17) is only significant for small thickness, low material 

absorption at low frequencies because the exponential damping of the transmitted field amplitude is 

proportional to d⋅k⋅f. Using equations (17) and (18) the absolute value of the transmittance through a 

solid body can be written as 
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An example for a measured transmission ⎜t(ƒ)⎜ through a 1 mm thick glass plate is shown in figure 6 

below 

 
Fig. 6a: THz pulse transmission through a 1 mm thick absorbing glass plate 
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Fig. 6b: Spectral transmission curve ⎜t(ƒ)⎜ of 1 mm thick glass plate. 
 
 

In the measured spectral region up to 1.2 THz only one resonance absorption dip can be seen. 

Therefore the dielectric function can be formed with only one set of parameters ε∞, ƒ0, ƒP and γ  in 

equation (9).  

The needed start parameter set for a subsequent curve fitting can be found in two consecutive steps.  

 

Step 1: 

At first a dispersion free complex refractive index N = n + i⋅k can be estimated in the following way: 

a. The real part of the refractive index n can be deduced from the time delay Δt1 or Δt2 in fig. 6a or 

from the frequency period Δf in the low frequency part of the spectrum in fig. 6b. With the 

difference frequency Δf between two consecutive transmission maxima or minima and the 

dedicated phase difference ΔΦ=2⋅π the real part of the refractive index n can be estimated by 

neglecting the imaginary part to  
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From transmission measurement of d = 1 mm thick glass in figure 6b frequency period Δƒ = 61 

GHz can be deduced. With this value and formula (20) we get n = 2.46. With Δt2 = 16 ps in fig. 

6a we get n = 2.4 and with Δt2 = 4.8 ps the result is n = 2.44. 

b. The imaginary part of the refractive index k can be deduced from the transmitted amplitude. In 

the region of interferences the maxima can be used to determine k values. The transmission 

maxima can be calculated approximately by using eq. (18), where the imaginary part k of the 

complex refractive index is only considered in the exponential terms and the real part of the 

phase Φ is a multiple m of 2⋅π. This results in the following approximation for the maximum 

transmission: 
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 If n is known, then k can be calculated from tmax using relation (20) by 
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With tmax = 0.363 at ƒ = 486 GHz we get from equation (22) k= 0.057. 

A test calculation of ⎜t(ƒ)⎜using equation (18) with the values n=2.5 and k=0.057 shows figure 7. A 

comparison between the measured transmission in figure 6b and the calculated transmission in fig. 7 

shows, that dispersion must be included to describe the experimental results. The lower measured 

transmission with increasing frequency can be only explained by an increasing imaginary part k of the 

refractive index with frequency.  

 

 
 
Fig. 7:  Calculated transmission ⎜t(ƒ)⎜(blue curve) of a 1 mm thick glass plate with N=2.5 + i⋅0.057 

using equation (19). The red curve is for the maximum transmission tmax according to equation 
(21). 

 
 
Step 2: 

Using the estimated n and k values from step 1 the parameters ε∞, ƒ0, ƒP and γ  in equation (9) must be 

estimated to start the curve fit with equation (19). The start parameters can be found as follows: 

- The value of ε∞ must be between 1 and n2. A possible start value is ε∞ = n. In this case some 

dispersion is included. In the example above it means ε∞ = 2.5. 

- Because the minimum transmission in fig. 6b is at frequencies > 1.2 THz we can set ƒ0 = 1.6 

THz as start value. If no minimum transmission in the measured spectral region can be seen, 

then a possible start value can be ƒ0 = 1.5⋅ƒmax, where ƒmax is the maximum frequency of the 

measurement region. 

- The damping constant γ can be estimated using the start values for n and k as follows: 
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For the 1 mm glass example with the above values for n, k, ƒ0 , ε∞ and the frequency ƒ = 486 

GHz we get γ = 0.47 THz. 
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- The plasma frequency ƒP must be chosen in such a way, that the right value for n results in eq. 

(9). This condition can be fulfilled with the relation  
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For the 1 mm glass sample with the start values for n, k, ƒ0 , ε∞ and ƒ as above the start value 

for ƒP can be with (23) calculated to ƒP = 2.97 THz. 

 

The frequency dependent transmission ⎜t(ƒ)⎜ can be calculated with equation (19) using ε∞ ,ƒ0 , ƒP , γ  

for the description of the frequency dependent refractive index N(f) according to equations (2) and (3). 

A curve fit to approximate the measured transmission in fig. 6b results in the final parameter set as 

follows: ε∞ = 2.54, ƒ0 = 1.59 THz, ƒP = 2.80 THz, γ = 0.471. The calculated spectral transmission ⎜t(ƒ)⎜ 

and the functions N(ƒ) and ε(ƒ) with these parameters are shown in figures (8), (9), and (10).  

Fig. 8:  Calculated transmission ⎜t(ƒ)⎜of a 1 mm thick glass plate with the dispersion parameters ε∞ = 
2.54, ƒ0 = 1.59 THz, ƒP = 2.80 THz, γ = 0.471 THz after curve fitting using equations (2), (3) and 
(18).  

 

 
 

 
Fig. 9a Calculated function N(f)        Fig. 9a Calculated function ε(f) 
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2.3 Reflection on a thick solid plate 
In case of a reflection geometry the angle of incidence α is typically non zero. Therefore we have to 

distinguish between the two reflection coefficients rS and rP corresponding to the polarization directions 

perpendicular and parallel to the plane of incidence. The reflected electric field amplitude r on an 

infinite thick sample can be described with the Fresnel coefficients as follows: 
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βα
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Fig. 10  Reflection and transmission on the 
surface of an infinite thick material 

 
The refraction angle β  can be calculated by 
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With (21) and (22) we can write: 
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The dispersion is given by equations (2) and (3). The reflected THz signal is ⎜rS ⎜ or ⎜rP⎜. 
 
 

Example 

An example for a measured reflection ⎜rS(ƒ)⎜ on a 7.7 mm thick glass plate is shown in figure 11 below. 

t 

π/2 

r 

β 

α α 

N=n+i⋅k 

Air 
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Fig. 11: Spectral reflection ⎜rS(ƒ)⎜ with perpendicular polarization of a 7.7 mm thick glass sample. The 

incidence angle is α = 30 °. 
 
 
In the measured spectral region up to 3.2 THz only one resonance absorption dip can be seen. 

Therefore the dielectric function can be formed with only one set of parameters ε∞, ƒ0, ƒP and γ  in 

equation (9).  

The needed start parameter set for a subsequent curve fitting can be found in two consecutive steps.  

 

Step 1: 

At first a dispersion free complex refractive index N = n + i⋅k can be estimated in the following way: 

a) The imaginary part k of the refractive index is neglected for the lowest measured frequency 

fL = 0.3 THz. The real part n ~ N of the refractive index at fL is calculated using 

equation (23) from the measured value ⎜rS(ƒL)⎜: 
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In case of the extraction of n from a measurement with parallel polarized THz light the 

formula is longer: 
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From figure 11 we get ⎜rS(ƒL)⎜= 0.47 at fL = 0.3 THz and α = 30 °. Using (28) we get n = 

2.45. 

b) The dispersion results in a maximum reflectance ⎜rS(ƒmax)⎜= 0.485 at the frequency fmax = 

0.8 THz. An estimated value for k we can calculate n by using equation (28) again with the 

reflection value at fmax. We interpret the difference between the refractive index calculated 

at  fmax and at fL as k. This results in k = 2.54 – 2.45 = 0.09. 

 
Step 2: 
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Using the estimated n and k values from step 1 the parameters ε∞, ƒ0, ƒP and γ  in equation (9) must be 

estimated to start the curve fit with equation (27). The start parameters can be found as follows: 

- The value of ε∞ must be between 1 and n2. A good start value is ε∞ = n. In this case some 

dispersion is included. In the example above it means ε∞ = 2.45. 

- The resonance frequency f0 must be between the frequency fmax = 0.8 THz for maximum 

reflectance and the frequency fmin = 3.2 THz for minimum reflectance. We estimate with 

2
ffff maxmin

max0
−

+=         (30) 

 f0 = 2 THz. 

- The damping constant γ can be estimated from the resonance width γ = fmin – fmax = 2.4 THz. 

An alternative way is using the known values for n and k as follows: 
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With the above values for n, k, ƒ0 , ε∞ and the frequency ƒL = 0.3 THz we get γ = 1.6 THz.  

- The plasma frequency ƒP must be chosen in such a way, that the right value for n results in eq. 

(9). This condition can be fulfilled with the equation (24) as described above.  

For the 7.7 mm glass sample with the start values for n=ε∞= 2.45, k=0.09, f0 = 2 THz, as above 

and ƒ=fL=0.3 THz the start value for ƒP can be calculated with (24) to ƒP = 3.7 THz. 

 
A curve fit using formulas (2), (3) and (27) with the measured reflection ⎜rS(ƒ)⎜ values results in the 

fitted parameters ε∞=3.48, ƒ0=2.20 THz, ƒP=3.71 THz and γ=2.43 THz. The calculated functions  ⎜rS(ƒ)⎜, 

N(f) and ε(f) are shown in figures 12 and 13. 

 
 
 
Fig 12: Calculated reflection ⎜rS(ƒ)⎜ of a 

7.7 mm thick glass plate with 
the dispersion parameters ε∞ = 
3.48, ƒ0 = 2.20 THz, ƒP = 3.71 
THz, γ = 2.43 THz after curve 
fitting using equations (2), (3) 
and (27). 
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Fig. 13a Calculated function N(f)          Fig. 13b Calculated dielectric function ε(f) 
 
 
 
 
 
2.4 Reflection on a thin solid plate 
In case of a reflection measurement on a thin solid sample the multiple reflections on the front and 

back side of the sample must be taken into account. This results in typical Fabry-Perot interference 

patterns. Figure 14 shows these multiple reflections. 

The total reflection r is the sum of the partial reflections ri, which can be calculated for perpendicular 

(index s) and parallel polarization (index p) as follows: 
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Fig. 14: Reflection r and transmission t of a thin solid plate with thickness d and refractive index N 
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If we consider the refractive index outside the solid plate as 1, then the transmission and reflection 

coefficients in equation (35) for perpendicular and parallel polarization can be written as follows: 
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An approximation of td in case of k<< n is: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−⋅

⋅⋅⋅⋅⋅−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅

−⋅⋅⋅⋅

⋅ ⋅== )(sinnc

knfd2i
c

)(sinnfd2

i
d

22

22

eeet α

παπ

Φ
  for k<< n  (40) 

The measured THz pulse in the time domain can be Fourier transformed and then compared with the 

absolute spectral reflection coefficient ⎜r(f)⎜ in equation (35). 

 
Example 

An example for a measured reflection ⎜rS(ƒ)⎜ on a 1 mm thick glass plate is shown in figure 15 below. 

td d 

t 

t2 t1 t0 

r 

b 

f 
tf+ 

rf- 

rb 

rf+ 

tb 

tf- 

r3 r2 r1 r0 

β 

α α 

N 



p. 17/19         Determination of material parameters from THz measurements 
 

 

www.batop.de 

 
Fig. 15a   Measured spectral reflection ⎜rs(f)⎜on a  
1 mm thick glass plate. The incidence angle is 
α=30° 

Fig. 15b   Low frequency part of measured 
spectral reflection  ⎜rs(f)⎜ on a 1 mm thick glass 
plate. 

 

In the measured spectral region up to 3.7 THz only one resonance absorption dip can be seen. 

Therefore the dielectric function can be formed with only one set of parameters ε∞, ƒ0, ƒP and γ  in 

equation (9).  

The needed start parameter set for a subsequent curve fitting can be found in two consecutive steps.  

 

Step 1: 

At first a dispersion free complex refractive index N = n + i⋅k can be estimated in the following way: 

a) The real part n of the refractive index N can be estimated from the interference pattern in 

the low frequency region, which is shown in fig. 15b. These interferences are only possible 

if the material absorption is low, so that the THz pulse undergoes several traces between 

the boundaries of the glass plate. We can determine n from these interferences by 

neglecting k using equation (40) with the following formula: 
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One period ΔΦ=2⋅π in fig. 15b is equivalent to a frequency period Δf = 61.6 GHz. With d=1 

mm and α=30° we can calculate using equation (41) n= 2.49. 

Because the measured spectral reflectance ⎜rs(f)⎜ is not constant at higher frequencies > 1 

THz there must be a significant dispersion of the refractive index N(f). A starting value for k 

can be estimated in two different ways 

b) From the frequency dependent decrease of the interference pattern a start value for k can 

be estimated in the following way: 

We consider only the maxima of the interferences at frequencies, where the real part of the 

phase Φ in equation (39) is equal to (1+2⋅m)⋅π (m=0,1,2,..) and we neglect the imaginary 

part k of the refractive index N in the transmission coefficients tf-, tf+ and in the reflection 

coefficients rb=rf- in equations (36) – (38). Then the influence of k on the reflectance ⎜rs(f)⎜ 

is only described with the transmission td in equation (40) and we get 
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Using this relation k can be estimated from a maximum value of ⎜rm(f)⎜ with the following formula: 
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From measurement with rm=0.543 at f=0.473 THz, α=30°, d=1mm and n=2.49 we get 

k=0.0817. 

 

c) The dispersion results in a maximum reflectance ⎜rS(ƒmax)⎜= 0.495 at the frequency fmax = 2 

THz. For an estimated value of k we can calculate n by using equation (28) with the 

reflection value at fmax. We interpret the difference between the refractive index calculated 

at fmax and from the interferences in the low frequency region as k. This results in k = 2.61 

– 2.49 = 0.11. 

 

The result of the calculated spectral reflection with dispersion free refractive index N=2.49 + i⋅0.0817 

using equation (34) and (41) is shown in figure 16. 

 

 

Fig. 16: Calculated spectral reflectance of a glass 
plate with the parameters d=1mm, α=30°, 
N=2.49 + i⋅0.0817, perpendicular polarization 
using equation (35) (blue) and (42) (red). 

 
 

 
Step 2: 

Using the estimated n and k values from step 1 the parameters ε∞, ƒ0, ƒP and γ  in equation (9) must be 

estimated to start the curve fit with equation (34). The start parameters can be found as follows: 

- The value of ε∞ is between 1 and n2. A good start value is ε∞ = n. In this case some dispersion 

is included. In the example above it means ε∞ = 2.49. 

- The resonance frequency f0 must be between the frequency fmax = 2 THz for maximum 

reflectance and the frequency fmin = 3.7 THz for minimum reflectance. We estimate with 
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 f0 = 2.85 THz. 

- The damping constant γ can be estimated from the resonance width γ = fmin – fmax = 1.7 THz. 

- The plasma frequency ƒP must be chosen in such a way, that the right value for n results in eq. 

(9). This condition can be fulfilled with equation (23) above.  

For the 1 mm thick glass sample with start values for n = ε∞ = 2.49, k = 0.0817, f0 = 2.35 THz, 

as above and ƒ = fL = 0.473 THz the start value for ƒP can be calculated with (23) as ƒP = 5.43 

THz. 

 
A curve fit using formulas (2), (3) and (35) with the measured reflection ⎜rS(ƒ)⎜ values results in the 

fitted parameters ε∞ = 2.93, ƒ0 = 2.66 THz, ƒP = 4.58 THz, γ = 2.14 THz. To get a better coincidence 

between the measured and calculated values the glass thickness must be corrected from 1 mm to 

0.983 mm. The calculated functions  ⎜rS(ƒ)⎜, N(f) and ε(f) are shown in figures 17 and 18.  

It is clearly seen in fig. 16, that the imaginary part k of the refractive index cannot be described using a 

fixed value as is assumed above in a first approximation. The reason is the large absorption at the 

resonance frequency ƒ0 = 2.66 THz.  

 
Fig 17: Calculated reflection ⎜rS(ƒ)⎜ of a 1 mm thick glass plate with the dispersion parameters ε∞ = 

2.93, ƒ0 = 2.66 THz, ƒP = 4.58 THz, γ = 2.14 THz after curve fitting using equations (2), (3) and 
(35).  

 
 
 

 
 
Fig. 18a Calculated function N(f)    Fig. 18b Calculated dielectric function ε(f) 


